Send to:

Choose Destination
See comment in PubMed Commons below
Neuroscience. 2008 Jun 12;154(1):329-37. doi: 10.1016/j.neuroscience.2008.02.025. Epub 2008 Feb 29.

Aged-related loss of temporal processing: altered responses to amplitude modulated tones in rat dorsal cochlear nucleus.

Author information

  • 1Department of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA.


Loss of temporal processing is characteristic of age-related loss of speech understanding observed in the elderly. Inhibitory glycinergic circuits provide input onto dorsal cochlear nucleus (DCN) projection neurons which likely serve to modulate excitatory responses to time-varying complex acoustic signals. The present study sought to test the hypothesis that age-related loss of inhibition would compromise the ability of output neurons to encode sinusoidally amplitude modulated (SAM) tones. Extracellular recordings were obtained from young and aged FBN rat DCN putative fusiform cells. Stimuli were SAM tones at three modulation depths (100, 50, and 20%) at 30 dB hearing level with the carrier frequency set to the unit's characteristic frequency. Discharge rate and synchrony were calculated to describe SAM responses. There were significant age-related changes in the shape and peak vector strength [best modulation frequency (BMF)] of temporal modulation transfer functions (tMTFs), with no significant age-related changes in rate modulation transfer functions (rMTFs) at BMF. Young neurons exhibited band-pass tMTFs for most SAM conditions while aged fusiform cells exhibited significantly more low-pass or double-peaked tMTFs. There were significant differences in tMTFs between buildup, pauser-buildup, and wide-chopper temporal response types. Young and aged wide-choppers displayed significantly lower vector strength values than the other two temporal DCN response types. Age-related decreases in the number of pauser-buildup response types and increases in wide-chopper types reported previously, could account, in part, for the observed loss of temporal coding of the aged fusiform cell. Age-related changes in SAM coding were similar to changes observed with receptor blockade of glycinergic inhibition onto fusiform cells and consistent with previously observed age-related loss of endogenous glycine levels and changes in normal adult glycine receptor function. DCN changes in SAM coding could, in part, underpin temporal processing deficits observed in the elderly.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk