Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Mol Phylogenet Evol. 2008 May;47(2):757-82. doi: 10.1016/j.ympev.2008.02.011. Epub 2008 Mar 28.

The value of sampling anomalous taxa in phylogenetic studies: major clades of the Asteraceae revealed.

Author information

  • 1Section of Integrative Biology, 1 University Station, A6700, 141 Patterson Building, University of Texas, Austin, TX 78712, USA. panero@mail.utexas.edu

Abstract

The largest family of flowering plants Asteraceae (Compositae) is found to contain 12 major lineages rather than five as previously suggested. Five of these lineages heretofore had been circumscribed in tribe Mutisieae (Cichorioideae), a taxon shown by earlier molecular studies to be paraphyletic and to include some of the deepest divergences of the family. Combined analyses of 10 chloroplast DNA loci by different phylogenetic methods yielded highly congruent well-resolved trees with 95% of the branches receiving moderate to strong statistical support. Our strategy of sampling genera identified by morphological studies as anomalous, supported by broader character sampling than previous studies, resulted in identification of several novel clades. The generic compositions of subfamilies Carduoideae, Gochnatioideae, Hecastocleidoideae, Mutisioideae, Pertyoideae, Stifftioideae, and Wunderlichioideae are novel in Asteraceae systematics and the taxonomy of the family has been revised to reflect only monophyletic groups. Our results contradict earlier hypotheses that early divergences in the family took place on and spread from the Guayana Highlands (Pantepui Province of northern South America) and raise new hypotheses about how Asteraceae dispersed out of the continent of their origin. Several nodes of this new phylogeny illustrate the vast differential in success of sister lineages suggesting focal points for future study of species diversification. Our results also provide a backbone exemplar of Asteraceae for supertree construction.

PMID:
18375151
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk