Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cell Stem Cell. 2008 Mar 6;2(3):274-83. doi: 10.1016/j.stem.2008.01.003.

Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo.

Author information

  • 1Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.

Abstract

Wingless (Wnt) is a potent morphogen demonstrated in multiple cell lineages to promote the expansion and maintenance of stem and progenitor cell populations. Wnt effects are highly context dependent, and varying effects of Wnt signaling on hematopoietic stem cells (HSCs) have been reported. We explored the impact of Wnt signaling in vivo, specifically in the context of the HSC niche by using an osteoblast-specific promoter driving expression of the paninhibitor of canonical Wnt signaling, Dickkopf1 (Dkk1). Here we report that Wnt signaling was markedly inhibited in HSCs and, unexpectedly given prior reports, reduction in HSC Wnt signaling resulted in reduced p21Cip1 expression, increased cell cycling, and a progressive decline in regenerative function after transplantation. This effect was microenvironment determined, but irreversible if the cells were transferred to a normal host. Wnt pathway activation in the niche is required to limit HSC proliferation and preserve the reconstituting function of endogenous hematopoietic stem cells.

PMID:
18371452
[PubMed - indexed for MEDLINE]
PMCID:
PMC2991120
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms

Substances

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk