Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Methods Mol Biol. 2008;438:3-8. doi: 10.1007/978-1-59745-133-8_1.

Definitions and criteria for stem cells.

Author information

  • Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

Abstract

The working definition of a stem cell includes self-renewal and the ability to differentiate into several cell types. There are also aspects of clonality and potency. Stem cells can be derived from early embryos after the formation of the blastocyst or from fetal, postnatal, or adult sources. Neural stem cells (NSCs) arise from embryonic ectoderm that forms neuroepithelial cells. The neuroepithelial cells generate radial glia that produce fetal and adult NSCs within the central nervous system (CNS). Adult NSC and restricted progenitors are found in the several regions of the CNS throughout life. Human embryonic stem cells, with their ability for self-renewal, clonal capacity, normal karyotype, and potential to form NSCs, easily may be the best source of NSCs and progenitors for treating disease. However, the complexity of NSCs, neural patterning, and the formation of multiple populations of neurons, astrocytes, and oligodendrocytes warrant the need for intense studies to characterize these cells and to define the microenvironment that will be needed to support them in the diseased CNS. Ways to produce well-defined populations, avoid oncogenicity, and ensure survival need to be clarified before clinical application can begin.

PMID:
18369744
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Springer
    Loading ...
    Write to the Help Desk