Display Settings:

Format

Send to:

Choose Destination
Plant Cell. 2008 Mar;20(3):803-16. doi: 10.1105/tpc.107.056390. Epub 2008 Mar 25.

Phospholipase Dalpha3 is involved in the hyperosmotic response in Arabidopsis.

Author information

  • 1Department of Biology, University of Missouri, St. Louis, Missouri 63121, USA.

Abstract

Rapid activation of phospholipase D (PLD), which hydrolyzes membrane lipids to generate phosphatidic acid (PA), occurs under various hyperosmotic conditions, including salinity and water deficiency. The Arabidopsis thaliana PLD family has 12 members, and the function of PLD activation in hyperosmotic stress responses has remained elusive. Here, we show that knockout (KO) and overexpression (OE) of previously uncharacterized PLDalpha3 alter plant response to salinity and water deficit. PLDalpha3 uses multiple phospholipids as substrates with distinguishable preferences, and alterations of PLDalpha3 result in changes in PA level and membrane lipid composition. PLDalpha3-KO plants display increased sensitivities to salinity and water deficiency and also tend to induce abscisic acid-responsive genes more readily than wild-type plants, whereas PLDalpha3-OE plants have decreased sensitivities. In addition, PLDalpha3-KO plants flower later than wild-type plants in slightly dry conditions, whereas PLDalpha3-OE plants flower earlier. These data suggest that PLDalpha3 positively mediates plant responses to hyperosmotic stresses and that increased PLDalpha3 expression and associated lipid changes promote root growth, flowering, and stress avoidance.

PMID:
18364466
[PubMed - indexed for MEDLINE]
PMCID:
PMC2329935
Free PMC Article

Images from this publication.See all images (8)Free text

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk