Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2008 Jun 6;283(23):15638-46. doi: 10.1074/jbc.M800487200. Epub 2008 Mar 25.

New insights into the alternative D-glucarate degradation pathway.

Author information

  • 1CNRS-UMR 8030, Genoscope-Commissariat à l'Energie Atomique, 2 Rue Gaston Crémieux, Evry 91057, France.


Although the D-glucarate degradation pathway is well characterized in Escherichia coli, genetic and biochemical information concerning the alternative pathway proposed in Pseudomonas species and Bacillus subtilis remains incomplete. Acinetobacter baylyi ADP1 is a Gram-negative soil bacterium possessing the alternative pathway and able to grow using D-glucarate as the only carbon source. Based on the annotation of its sequenced genome (1), we have constructed a complete collection of singlegene deletion mutants (2). High throughput profiling for growth on a minimal medium containing D-glucarate as the only carbon source for approximately 2450 mutants led to the identification of the genes involved in D-glucarate degradation. Protein purification after recombinant production in E. coli allowed us to reconstitute the enzymatic pathway in vitro. We describe here the kinetic characterization of D-glucarate dehydratase, d-5-keto-4-deoxyglucarate dehydratase, and of cooperative alpha-ketoglutarate semialdehyde dehydrogenase. Transcription and expression analyses of the genes involved in D-glucarate metabolism within a single organism made it possible to access information regarding the regulation of this pathway for the first time.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk