Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Microbiol. 2008 May;68(3):624-41. doi: 10.1111/j.1365-2958.2008.06176.x. Epub 2008 Mar 20.

An isochromosome confers drug resistance in vivo by amplification of two genes, ERG11 and TAC1.

Author information

  • 1Department of Genetics, Cell and Development, University of Minnesota, Minneapolis, MN 55305, USA.

Abstract

Acquired azole resistance is a serious clinical problem that is often associated with the appearance of aneuploidy and, in particular, with the formation of an isochromosome [i(5L)] in the fungal opportunist Candida albicans. Here we exploited a series of isolates from an individual patient during the rapid acquisition of fluconazole resistance (Flu(R)). Comparative genome hybridization arrays revealed that the presence of two extra copies of Chr5L, on the isochromosome, conferred increased Flu(R) and that partial truncation of Chr5L reduced Flu(R). In vitro analysis of the strains by telomere-mediated truncations and by gene deletion assessed the contribution of all Chr5L genes and of four specific genes. Importantly, ERG11 (encoding the drug target) and a hyperactive allele of TAC1 (encoding a transcriptional regulator of drug efflux pumps) made independent, additive contributions to Flu(R) in a gene copy number-dependent manner that was not different from the contributions of the entire Chr5L arm. Thus, the major mechanism by which i(5L) formation causes increased azole resistance is by amplifying two genes: ERG11 and TAC1.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Write to the Help Desk