Display Settings:

Format

Send to:

Choose Destination
Nucleic Acids Res. 2008 May;36(8):2705-16. doi: 10.1093/nar/gkn102. Epub 2008 Mar 19.

Dissecting protein-RNA recognition sites.

Author information

  • 1School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany.

Abstract

We analyze the protein-RNA interfaces in 81 transient binary complexes taken from the Protein Data Bank. Those with tRNA or duplex RNA are larger than with single-stranded RNA, and comparable in size to protein-DNA interfaces. The protein side bears a strong positive electrostatic potential and resembles protein-DNA interfaces in its amino acid composition. On the RNA side, the phosphate contributes less, and the sugar much more, to the interaction than in protein-DNA complexes. On average, protein-RNA interfaces contain 20 hydrogen bonds, 7 that involve the phosphates, 5 the sugar 2'OH, and 6 the bases, and 32 water molecules. The average H-bond density per unit buried surface area is less with tRNA or single-stranded RNA than with duplex RNA. The atomic packing is also less compact in interfaces with tRNA. On the protein side, the main chain NH and Arg/Lys side chains account for nearly half of all H-bonds to RNA; the main chain CO and side chain acceptor groups, for a quarter. The 2'OH is a major player in protein-RNA recognition, and shape complementarity an important determinant, whereas electrostatics and direct base-protein interactions play a lesser part than in protein-DNA recognition.

PMID:
18353859
[PubMed - indexed for MEDLINE]
PMCID:
PMC2377425
Free PMC Article

Images from this publication.See all images (5)Free text

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk