Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Dairy Sci. 2008 Apr;91(4):1693-707. doi: 10.3168/jds.2007-0441.

A comparison of three strains of holstein-friesian grazed on pasture and managed under different feed allowances.

Author information

  • 1DairyNZ, Private Bag 3221, Hamilton, New Zealand 3240. kevin.macdonald@dairynz.co.nz

Abstract

This experiment compared Holstein-Friesian (HF) cows of New Zealand (NZ) origin representative of genetics present in the 1970s (NZ70; n = 45) and 1990s (NZ90; n = 60), and a group of HF cows of North American origin with 1990s genetics (NA90; n = 60), which were managed in grazing systems with a range of feeding allowances (4.5 to 7.0 t/cow per yr) over 3 yr. The NZ70 cows had the lowest Breeding Worth genetic index and the lowest breeding values for yields of fat, protein, and milk volume; the NZ90 and NA90 cows were selected to have similar breeding values for milk traits and were representative of cows of high genetic merit in the 1990s. The NZ90 cows had a higher milk protein concentration (3.71%) than either the NA90 (3.43%) or the NZ70 cows (3.41%), and a higher milk fat concentration (4.86%) than the NA90 cows (4.26%) with a level similar to the NZ70 cows (4.65%). The NZ90 cows produced significantly greater yields of fat, protein, and lactose than the NA90 and NZ70 cows. The NZ70 cows had the lowest mean annual body weight (473 kg) but the highest body condition score (BCS; 5.06). Days in milk were the same for the 2 NZ strains (286 d in milk), both of which were greater than the NA90 cows (252 d in milk). There was no genotype x environment interaction for combined milk fat and protein yield (milksolids), with NZ90 producing 52 kg/cow more than the NA90 at all feeding levels. The NZ70 strain had the highest seasonal average BCS (5.06), followed by the NZ90 (4.51) and the NA90 (4.13) strains on a 1 to 10 scale. Body condition score increased with higher feeding levels in the 2 NZ strains, but not in the NA strain. The first-parity cows commenced luteal activity 11 d later than older cows (parities 2 and 3), and the NA90 cows commenced luteal activity 4 and 10 d earlier than the NZ70 and NZ90 cows. Earlier estrus activity did not result in a higher in-calf rate. The NZ70 and NZ90 cows had similar in-calf rates (pregnancy diagnosed to 6 wk; 69%), which were higher than those achieved by NA90 cows (54%). Results showed that the NA90 strain used in this experiment was not suitable for traditional NZ grazing systems. Grazing systems need to be modified if the NA90 strain is to be successfully farmed in NZ. The data reported here show that the NA90 cows require large amounts of feed, but this will not prevent them from having a lower BCS than the NZ strains. Combined with poor reproductive performance, this means that NA90 cows are less productive than NZ HF in pasture-based seasonal calving systems with low levels of supplementation.

PMID:
18349263
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk