Format

Send to

Choose Destination
See comment in PubMed Commons below
Environ Entomol. 2008 Feb;37(1):198-205.

Imported fire ant (Hymenoptera: Formicidae) mound shape characteristics along a north-south gradient.

Author information

  • 1USDA-ARS Biological Control of Pests Research Unit, PO Box 67, Stoneville, MS 38776, USA. jvogt@ars.usda.gov

Abstract

The nests of some mound-building ants are thought to serve an important function as passive solar collectors. To test this hypothesis, imported fire ant (Solenopsis invicta Buren, S. richteri Forel, and their hybrid) mound shape characteristics (south facing slope angle and area, mound height, and basal elongation in the plane of the ground) were quantified in 2005 and 2006 at a number of locations from approximately 30 degrees 25' N (Long Beach, MS) to 35 degrees 3' N (Fayetteville, TN). Insolation (w*h/m2), maximum sun angle (sun elevation in degrees above the horizon at noon, dependent on date and latitude), cumulative rainfall (7 and 30 d before sampling), and mean ambient temperature (7 d before sampling) for each site x date combination were used as predictive variables to explain mound shape characteristics. Steepness of south-facing mound slopes was negatively associated with maximum sun angle at higher temperatures, with predicted values falling from approximately 36 degrees at sun angle=40 degrees to 26 degrees at sun angle=70 degrees; at lower temperatures, slope remained relatively constant at 28 degrees. On average, mound height was negatively correlated with maximum sun angle. Rainfall had a net negative effect on mound height, but mound height increased slightly with maximum sun angle when rainfall was high. Mound elongation generally increased with increased mound building activity. Under favorable temperature conditions and average rainfall, imported fire ant mounds were tallest, most eccentric, and had the steepest south facing slopes during periods of low maximum sun angle. Mound shape characteristics are discussed with regard to season and their potential usefulness for remote sensing efforts.

PMID:
18348811
[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk