Femto-Newton light force measurement at the thermal noise limit

Opt Lett. 2008 Mar 15;33(6):539-41. doi: 10.1364/ol.33.000539.

Abstract

The measurement of very small light forces has wide applications in many fields of physics. A common measurement method for small force detection is the determination of changes in the dynamic behavior of mechanical oscillators, either in amplitude or in frequency. The detection of slowly varying forces mostly requires long period oscillators, such as a torsion pendulum. We demonstrate the application of a macroscopic, low-noise, torsion balance oscillator for the detection of radiation pressure forces at the femto-Newton level. The system is "precooled" (removing excess seimic noise) to be only thermal noise limited. The demonstrated force sensitivity reaches the thermal limit.