Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2008 May 16;283(20):13638-51. doi: 10.1074/jbc.M802027200. Epub 2008 Mar 17.

Roles of Pofut1 and O-fucose in mammalian Notch signaling.

Author information

  • 1Department of Cell Biology, Albert Einstein College of Medicine, New York, New York 10461, USA.

Abstract

Mammalian Notch receptors contain 29-36 epidermal growth factor (EGF)-like repeats that may be modified by protein O-fucosyltransferase 1 (Pofut1), an essential component of the canonical Notch signaling pathway. The Drosophila orthologue Ofut1 is proposed to function as both a chaperone required for stable cell surface expression of Notch and a protein O-fucosyltransferase. Here we investigate these dual roles of Pofut1 in relation to endogenous Notch receptors of Chinese hamster ovary and murine embryonic stem (ES) cells. We show that fucosylation-deficient Lec13 Chinese hamster ovary cells have wild type levels of Pofut1 and cell surface Notch receptors. Nevertheless, they have reduced binding of Notch ligands and low levels of Delta1- and Jagged1-induced Notch signaling. Exogenous fucose but not galactose rescues both ligand binding and Notch signaling. Murine ES cells lacking Pofut1 also have wild type levels of cell surface Notch receptors. However, Pofut1-/- ES cells do not bind Notch ligands or exhibit Notch signaling. Although overexpression of fucosyltransferase-defective Pofut1 R245A in Pofut1-/- cells partially rescues ligand binding and Notch signaling, this effect is not specific. The same rescue is achieved by an unrelated, inactive, endoplasmic reticulum glucosidase. Therefore, mammalian Notch receptors require Pofut1 for the generation of optimally functional Notch receptors, but, in contrast to Drosophila, Pofut1 is not required for stable cell surface expression of Notch. Importantly, we also show that, under certain circumstances, mammalian Notch receptors are capable of signaling in the absence of Pofut1 and O-fucose.

PMID:
18347015
[PubMed - indexed for MEDLINE]
PMCID:
PMC2376238
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk