Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Chem Inf Model. 2008 Apr;48(4):811-6. doi: 10.1021/ci700396b. Epub 2008 Mar 14.

Hydra: a self regenerating high performance computing grid for drug discovery.

Author information

  • 1Anadys Pharmaceuticals, San Diego, California 92121, USA. dbullard@anadyspharma.com

Abstract

Computer aided drug design is progressing and playing an increasingly important role in drug discovery. Computational methods are being used to evaluate larger and larger numbers of real and virtual compounds. New methods based on molecular simulations that take protein and ligand flexibility into account also contribute to an ever increasing need for compute time. Computational grids are therefore becoming a critically important tool for modern drug discovery, but can be expensive to deploy and maintain. Here, we describe the low cost implementation of a 165 node, computational grid at Anadys Pharmaceuticals. The grid makes use of the excess computing capacity of desktop computers deployed throughout the company and of outdated desktop computers which populate a central computing grid. The performance of the grid grows automatically with the size of the company and with advances in computer technology. To ensure the uniformity of the nodes in the grid, all computers are running the Linux operating system. The desktop computers run Linux inside MS Windows using coLinux as virtualization software. HYDRA has been used to optimize computational models, for virtual screening and for lead optimization.

PMID:
18338845
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk