High-frame rate, full-view myocardial elastography with automated contour tracking in murine left ventricles in vivo

IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Jan;55(1):240-8. doi: 10.1109/TUFFC.2008.633.

Abstract

Myocardial elastography is a novel method for noninvasively assessing regional myocardial function, with the advantages of high resolution and high precision. The purpose in this paper was to isolate the left ventricle from other structures for better displacement and strain visualization. Using a high-resolution (30 MHz) ultrasound system and a retrospective electrocardiogram (ECG)-gating technique, an extremely high frame rate (up to 8 kHz) was previously shown achievable for full-view (12-mm times 12-mm) myocardial elastography in the murine left ventricle. In vivo experiments were performed in anesthetized normal and infarcted mice [one day after left anterior descending (LAD) coronary artery ligation]. Radio frequency (RF) signals of the left ventricle (LV) in the long-axis view and the associated ECG were simultaneously acquired, with the ECG allowing gating of the RF signals. Incremental axial displacement of the myocardium was estimated using a one-dimensional (1-D) cross-correlation function. The cumulative displacement and strain then were calculated from the incremental displacement. In this paper, after manual selection of 40-50 points along the endo-and epicardial borders in the first frame of the cine-loop, myocardial contour was automatically tracked across the entire LV throughout a full cardiac cycle, which correctly determined the region of interest (ROI) for better interpretation. The cine-loop of the cumulative displacement and strain in one cardiac cycle, in both the normal and infarcted cases, showed that motion and deformation in the infarcted myocardium were significantly reduced, and that the infarcted region underwent thinning, rather than thickening, during systole. High precision of the displacement estimation, due to high frequency (30 MHz) and high frame rate (up to 8 kHz) available with this system, allowed for automated tracking of a manually-initialized myocardial contour over an entire cardiac cycle. High frame rate, full-view myocardial elastography with automated contour tracking could provide regional strain information of the LV throughout an entire cardiac cycle, and characterize normal as well as detect abnormal myocardial function, such as an infarction. The method of automated contour tracking can further enhance the capability of the elastographic technique with minimal user intervention while providing accurate functional information for the detection of disease throughout the entire cardiac cycle.

Publication types

  • Letter
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Echocardiography / methods*
  • Elasticity
  • Elasticity Imaging Techniques / methods*
  • Heart Ventricles / diagnostic imaging*
  • Image Interpretation, Computer-Assisted / methods*
  • Mice
  • Mice, Inbred C57BL
  • Stress, Mechanical
  • Ventricular Function*