Send to:

Choose Destination
See comment in PubMed Commons below
J Cell Biol. 2008 Mar 10;180(5):915-29. doi: 10.1083/jcb.200707126.

The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility.

Author information

  • 1Abteilung Biochemie und Molekularbiologie, Institut für Biochemie, Universitätsklinikum, Rheinisch-Westfälische Technische Hochschule Aachen University, 52057 Aachen, Germany.


Cyclin-dependent kinases (Cdks) fulfill key functions in many cellular processes, including cell cycle progression and cytoskeletal dynamics. A limited number of Cdk substrates have been identified with few demonstrated to be regulated by Cdk-dependent phosphorylation. We identify on protein expression arrays novel cyclin E-Cdk2 substrates, including SIRT2, a member of the Sirtuin family of NAD(+)-dependent deacetylases that targets alpha-tubulin. We define Ser-331 as the site phosphorylated by cyclin E-Cdk2, cyclin A-Cdk2, and p35-Cdk5 both in vitro and in cells. Importantly, phosphorylation at Ser-331 inhibits the catalytic activity of SIRT2. Gain- and loss-of-function studies demonstrate that SIRT2 interfered with cell adhesion and cell migration. In postmitotic hippocampal neurons, neurite outgrowth and growth cone collapse are inhibited by SIRT2. The effects provoked by SIRT2, but not those of a nonphosphorylatable mutant, are antagonized by Cdk-dependent phosphorylation. Collectively, our findings identify a posttranslational mechanism that controls SIRT2 function, and they provide evidence for a novel regulatory circuitry involving Cdks, SIRT2, and microtubules.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk