Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Cell Biol. 2008 May;28(10):3301-12. doi: 10.1128/MCB.01542-07. Epub 2008 Mar 10.

Eukaryotic wobble uridine modifications promote a functionally redundant decoding system.

Author information

  • 1Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden.

Abstract

The translational decoding properties of tRNAs are modulated by naturally occurring modifications of their nucleosides. Uridines located at the wobble position (nucleoside 34 [U(34)]) in eukaryotic cytoplasmic tRNAs often harbor a 5-methoxycarbonylmethyl (mcm(5)) or a 5-carbamoylmethyl (ncm(5)) side chain and sometimes an additional 2-thio (s(2)) or 2'-O-methyl group. Although a variety of models explaining the role of these modifications have been put forth, their in vivo functions have not been defined. In this study, we utilized recently characterized modification-deficient Saccharomyces cerevisiae cells to test the wobble rules in vivo. We show that mcm(5) and ncm(5) side chains promote decoding of G-ending codons and that concurrent mcm(5) and s(2) groups improve reading of both A- and G-ending codons. Moreover, the observation that the mcm(5)U(34)- and some ncm(5)U(34)-containing tRNAs efficiently read G-ending codons challenges the notion that eukaryotes do not use U-G wobbling.

PMID:
18332122
[PubMed - indexed for MEDLINE]
PMCID:
PMC2423140
Free PMC Article

Images from this publication.See all images (7)Free text

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk