Send to:

Choose Destination
See comment in PubMed Commons below
Ann Epidemiol. 2009 Feb;19(2):73-8. doi: 10.1016/j.annepidem.2007.12.001. Epub 2008 Mar 10.

Vitamin D status: measurement, interpretation, and clinical application.

Author information

  • 1Department of Medicine, Section of Endocrinology, Nutrition, and Diabetes, Vitamin D, Skin and Bone Research Laboratory, Boston University Medical Center, Boston, MA, USA.


Vitamin D, the sunshine vitamin, is now recognized not only for its importance in promoting bone health in children and adults but also for other health benefits, including reducing the risk of chronic diseases such as autoimmune diseases, common cancer, and cardiovascular disease. Vitamin D made in the skin or ingested in the diet is biologically inert and requires 2 successive hydroxylations first in the liver on carbon 25 to form 25-hydroxyvitamin D [25(OH)D], and then in the kidney for a hydroxylation on carbon 1 to form the biologically active form of vitamin D, 1,25-dihydroxyvitamin D [1,25(OH)(2)D]. With the identification of 25(OH)D and 1,25(OH)(2)D, methods were developed to measure these metabolites in the circulation. Serum 25(OH)D is the barometer for vitamin D status. Serum 1,25(OH)(2)D provides no information about vitamin D status and is often normal or even increased as the result of secondary hyperparathyroidism associated with vitamin D deficiency. Most experts agree that 25(OH)D of <20 ng/mL is considered to be vitamin D deficiency, whereas a 25(OH)D of 21-29 ng/mL is considered to be insufficient. The goal should be to maintain both children and adults at a level >30 ng/mL to take full advantage of all the health benefits that vitamin D provides.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk