Send to:

Choose Destination
See comment in PubMed Commons below
Arch Biochem Biophys. 2008 Aug 1;476(1):65-74. doi: 10.1016/ Epub 2008 Mar 4.

The plasma membrane Ca2+ ATPase of animal cells: structure, function and regulation.

Author information

  • 1Department of Biochemistry, University of Padova, Viale G. Colombo, 3 35131 Padova, Italy.


Most important processes in cell life are regulated by calcium (Ca2+). A number of mechanisms have thus been developed to maintain the concentration of free Ca2+ inside cells at the level (100-200nM) necessary for the optimal operation of the targets of its regulatory function. The systems that move Ca2+ back and forth across membranes are important actors in its control. The plasma membrane calcium ATPase (PMCA pump) which ejects Ca2+ from all eukaryotic cell types will be the topic of this contribution. The pump uses a molecule of ATP to transport one molecule of Ca2+ from the cytosol to the external environment. It is a P-type ATPase encoded by four genes (ATP2B1-4), the transcripts of which undergo different types of alternative splicing. Many pump variants thus exist. Their multiplicity is best explained by the specific Ca2+ demands in different cell types. In keeping with these demands, the isoforms are differently expressed in tissues and cell types and have differential Ca2+ extruding properties. At very low Ca2+ concentrations the PMCAs are nearly inactive. They must be activated by calmodulin, by acid phospholipids, by protein kinases, and by other means, e.g., a dimerization process. Other proteins interact with the PMCAs (i.e., MAGUK and NHERF at the PDZ domain and calcineurin A in the main intracellular domain) to sort them to specific regions of the cell membrane or to regulate their function. In some cases the interaction is isoform, or even splice variant specific. PMCAs knock out (KO) mice have been generated and have contributed information on the importance of PMCAs to cells and organisms. So far, only one human genetic disease, hearing loss, has been traced back to a PMCA defect.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk