Laser photofragmentation-fragment detection and pyrolysis-laser-induced fluorescence studies on energetic materials

Appl Opt. 1999 Oct 20;38(30):6447-54. doi: 10.1364/ao.38.006447.

Abstract

Trace concentrations of energetic materials such as 2, 4, 6-trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), and hexahydro-1, 3, 5-trinitro-s-triazine (RDX) are detected by laser photofragmentation-fragment detection (PF-FD) spectrometry. In this technique, a single laser operating near 227 nm photofragments the parent molecule and facilitates the detection of the characteristic NO fragment by means of its A (2)Sigma(+)-X (2)Sigma (0, 0) transitions near 227 nm. Fragment detection is accomplished by resonance-enhanced multiphoton ionization with miniature electrodes and by laser-induced fluorescence (LIF) with a photodetector. Experiments are also conducted in the visible region by use of 453.85-nm radiation for photofragmentation and fragment detection. Sand samples contaminated with PETN and RDX are analyzed by a pyrolysis-LIF technique, which involves pyrolysis of the energetic material with subsequent detection of the pyrolysis products NO and NO(2) by LIF and PF-LIF, respectively, near 227 nm. The application of these techniques to the trace analysis of TNT, PETN, and RDX at ambient pressure in room air is demonstrated with limits of detection (signal-to-noise ratio, 3) in the low parts-in-10(9) to parts-in-10(6) range for a 20-s integration time and 10-120 microJ of laser energy at 226.8 nm and approximately 5 mJ at 453.85 nm. An increase in detection sensitivity is projected with an increase in laser energy and an improved system design. The analytical merits of these techniques are discussed and compared with those of other laser-based techniques.