Improved field methods to quantify methane oxidation in landfill cover materials using stable carbon isotopes

Environ Sci Technol. 2008 Feb 1;42(3):665-70. doi: 10.1021/es0710757.

Abstract

Stable carbon isotopes provide a robust approach toward quantification of methanotrophic activity in landfill covers. The field method often applied to date has compared the delta13C of emitted to anaerobic zone CH4. Recent laboratory mass balance studies have indicated thatthis approach tends to underestimate CH4 oxidation. Therefore, we examined the CH4-delta13C at various soil depths in field settings and compared these values to emitted CH4. At 5-10 cm depth, we observed the most enrichment in CH4-delta13C (-46.0 to -32.1 per thousand). Emitted CH4-delta13C was more negative, ranging from -56.5 to -43.0 per thousand. The decrease in CH4-delta13C values from the shallow subsurface to the surface is the result of processes that result in selective emission of 12CH4 and selective retention of 13CH4 within the soil. Seasonal percent oxidation was calculated at seven sites representing four cover materials. Probe samples averaged greater (21 +/- 2%, p < 0.001, n = 7) oxidation than emitted CH4 data. We argue that calculations of fraction oxidized based on soil derived CH4 should yield upper limit values. When considered with emitted CH4 values, this combined approach will more realistically bracket the actual oxidation value. Following this guideline, we found the percent oxidation to be 23 +/- 3% and 38 +/- 16% for four soil and three compost covers, respectively.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Carbon Isotopes
  • Methane / metabolism*
  • Oxidation-Reduction
  • Refuse Disposal / methods*
  • Seasons
  • Soil
  • Time Factors

Substances

  • Carbon Isotopes
  • Soil
  • Methane