Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Eur J Endocrinol. 2008 Jun;158(6):929-34. doi: 10.1530/EJE-08-0011. Epub 2008 Mar 5.

A novel missense mutation in GALNT3 causing hyperostosis-hyperphosphataemia syndrome.

Author information

  • 1Department of Medical Sciences, Uppsala University Hospital, Ing.70, 3 tr, 75185 Uppsala, Sweden.

Abstract

OBJECTIVE:

Hyperostosis-hyperphosphataemia syndrome (HHS) is a rare hereditary disorder characterized by hyperphosphataemia, inappropriately normal or elevated 1,25-dihydroxyvitamin D(3) and localized painful cortical hyperostosis. HHS was shown to be caused by inactivating mutations in GALNT3, encoding UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase 3 (GalNAc-transferase; GALNT3). Herein, we sought to identify the genetic cause of hyperphosphataemia and tibial hyperostosis in a 19-year-old girl of Colombian origin.

METHODS:

Genomic DNA was extracted and sequencing analysis of the GALNT3 and fibroblast growth factor 23 (FGF23) genes performed. Serum levels of intact and C-terminal FGF23 were measured using two different ELISA methods.

RESULTS:

Mutational analysis identified a novel homozygous missense mutation in exon 6 of GALNT3 (1584 G>A), leading to an amino acid shift from Arg to His at residue 438 (R438H). The mutation was not found in over 200 control alleles or in any single nucleotide polymorphism databases. The R438 residue is highly conserved throughout species and in all known GalNAc-transferase family members. Modelling predicted the substitution deleterious for protein structure. Importantly, the phosphaturic factor FGF23 was differentially processed, as reflected by low intact (15 pg/ml) but high C-terminal (839 RU/ml) serum FGF23 levels.

CONCLUSIONS:

We report on the first missense mutation in GALNT3 giving rise to HHS, since previous GALNT3 mutations in HHS caused aberrant splicing or premature truncation of the protein. The R438H substitution likely abrogates GALNT3 activity, in turn causing enhanced FGF23 degradation and subsequent hyperostosis/hyperphosphataemia.

PMID:
18322299
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk