Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Ann Biomed Eng. 2008 Apr;36(4):580-5. doi: 10.1007/s10439-008-9467-2. Epub 2008 Mar 4.

Microvascular endothelial cells exhibit optimal aspect ratio for minimizing flow resistance.

Author information

  • 1Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA.

Abstract

A recent analytical solution of the three-dimensional Stokes flow through a bumpy tube predicts that for a given bump area, there exists an optimal circumferential wavenumber which minimizes flow resistance. This study uses measurements of microvessel endothelial cell morphology to test whether this prediction holds in the microvasculature. Endothelial cell (EC) morphology was measured in blood perfused in situ microvessels in anesthetized mice using confocal intravital microscopy. EC borders were identified by immunofluorescently labeling the EC surface molecule ICAM-1 which is expressed on the surface but not in the EC border regions. Comparison of this theory with extensive in situ measurements of microvascular EC geometry in mouse cremaster muscle using intravital microscopy reveals that the spacing of EC nuclei in venules ranging from 27 to 106 microm in diameter indeed lies quite close to this predicted optimal configuration. Interestingly, arteriolar ECs are configured to minimize flow resistance not in the resting state, but at the dilated vessel diameter. These results raise the question of whether less organized circulatory systems, such as that found in newly formed solid tumors or in the developing embryo, may deviate from the optimal bump spacing predicted to minimize flow resistance.

PMID:
18317930
[PubMed - indexed for MEDLINE]
PMCID:
PMC2668589
Free PMC Article

Images from this publication.See all images (3)Free text

Figure 1
Figure 2
Figure 3
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer Icon for PubMed Central
    Loading ...
    Write to the Help Desk