Send to:

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2008 Mar 1;68(5):1462-70. doi: 10.1158/0008-5472.CAN-07-3094.

Altered TAB1:I kappaB kinase interaction promotes transforming growth factor beta-mediated nuclear factor-kappaB activation during breast cancer progression.

Author information

  • 1Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, CO 80045, USA.


The conversion of transforming growth factor beta (TGF-beta) from a tumor suppressor to a tumor promoter occurs frequently during mammary tumorigenesis, yet the molecular mechanisms underlying this phenomenon remain undefined. We show herein that TGF-beta repressed nuclear factor-kappaB (NF-kappaB) activity in normal NMuMG cells, but activated this transcription factor in their malignant counterparts, 4T1 cells, by inducing assembly of TGF-beta-activated kinase 1 (TAK1)-binding protein 1 (TAB1):I kappaB kinase beta (IKK beta) complexes, which led to the stimulation of a TAK1:IKK beta:p65 pathway. TAB1:IKK beta complexes could only be detected in NMuMG cells following their induction of epithelial-mesenchymal transition (EMT), which, on TGF-beta treatment, activated NF-kappaB. Expression of a truncated TAB1 mutant [i.e., TAB1(411)] reduced basal and TGF-beta-mediated NF-kappaB activation in NMuMG cells driven to undergo EMT by TGF-beta and in 4T1 cells stimulated by TGF-beta. TAB1(411) expression also inhibited TGF-beta-stimulated tumor necrosis factor-alpha and cyclooxygenase-2 expression in 4T1 cells. Additionally, the ability of human MCF10A-CA1a breast cancer cells to undergo invasion in response to TGF-beta absolutely required the activities of TAK1 and NF-kappaB. Moreover, small interfering RNA-mediated TAK1 deficiency restored the cytostatic activity of TGF-beta in MCF10A-CA1a cells. Finally, expression of truncated TAB1(411) dramatically reduced the growth of 4T1 breast cancers in syngeneic BALB/c, as well as in nude mice, suggesting a potentially important role of NF-kappaB in regulating innate immunity by TGF-beta. Collectively, our findings have defined a novel TAB1:TAK1:IKK beta:NF-kappaB signaling axis that forms aberrantly in breast cancer cells and, consequently, enables oncogenic signaling by TGF-beta.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk