Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neuroscience. 2008 Mar 27;152(3):646-55. doi: 10.1016/j.neuroscience.2007.10.069. Epub 2008 Feb 7.

Bone marrow stromal cells reduce ischemia-induced astrocytic activation in vitro.

Author information

  • 1Department of Neurology, Henry Ford Health System, Education and Research Building, #3056, 2799 West Grand Boulevard, Detroit, MI 48202, USA.

Abstract

Transplantation of bone marrow stromal cells (BMSCs) improves animal neurological functional recovery after stroke. To obtain insight into the mechanisms underlying the therapeutic benefit, we directed our attention to the interaction of BMSCs with astrocytes. Astrocytes become reactive (astrogliosis) after a brain injury, such as stroke. Astrogliosis plays both beneficial and detrimental roles in brain recovery. Previously, we have shown that administration of BMSCs to animals with stroke significantly reduces the thickness of the scar wall formed by reactive astrocytes. We tested the influence of mouse bone marrow stromal cell (mBMSC) on astrogliosis under oxygen-glucose deprivation (OGD)/reoxygenation conditions in vitro, employing an anaerobic chamber. Our data indicate that mBMSCs down-regulate glial fibrillary acidic protein (GFAP) expression in astrocytes after 2 h of OGD and an additional 16 h reoxygenation. mBMSCs protected astrocytes from ischemia, maintaining morphological integrity and proliferation. The IL-6/IL-6R/gp130 pathway is associated with astrogliosis in response to CNS (disorders. Therefore, we examined the effects of mBMSC on the IL-6/IL-6R/gp130 pathway as an underlying mechanism of mBMSC-altered astrogliosis. Furthermore, IL-6 siRNA was used to block IL-6 expression in astrocytes to further investigate IL-6 involvement in mBMSC-altered astrogliosis. Our results indicate that the mBMSC-conferred decline of astrogliosis post-ischemia may derive from the down-regulation of the IL-6/IL-6R/gp130 pathway.

PMID:
18313231
[PubMed - indexed for MEDLINE]
PMCID:
PMC2366889
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk