Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Adv Exp Med Biol. 2008;614:333-43. doi: 10.1007/978-0-387-74911-2_37.

Modeling oxygenation and selective delivery of drug carriers post-myocardial infarction.

Author information

  • 1Department of Mechanical Engineering, Temple University, Philadelphia, PA 19122, USA.

Abstract

An anatomically realistic mathematical model of oxygen transport in cardiac tissue was developed to help in deciding what angiogenic strategies should be used to rebuild the vasculature post myocardial infarction (MI). Model predictions closely match experimental measurements from a previous study, and can be used to predict distributions of oxygen concentration in normal and infarcted rat hearts. Furthermore, the model can accurately predict tissue oxygen levels in infarcted tissue treated with pro-angiogenic compounds. Immunoliposome (IL) targeting to areas of inflammation after MI could provide the means by which pro-angiogenic compounds can be selectively targeted to the infarcted region. The adhesion of model drug carriers and immunoliposomes coated with antibody to P-selectin was quantified in a MI rat model. Anti-P-selectin coated model drug carriers showed a 140% and 180% increase in adhesion in the boarder zone of the MI 1 and 4 hours post-MI, respectively. Circulating for 24 hrs, radiolabeled anti-P-selectin immunoliposomes showed an 83% and 92% increase in targeting to infarcted myocardium when injected 0 and 4 hrs post-MI, respectively. Targeting to upregulated adhesion molecules on the endothelium provides a promising strategy for selectively delivering compounds to the infarct region of the myocardium using our liposomal based drug delivery vehicle.

PMID:
18290344
[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

Medical

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk