Format

Send to

Choose Destination
See comment in PubMed Commons below
Biomaterials. 2008 Apr;29(12):1920-30. doi: 10.1016/j.biomaterials.2007.12.038.

Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy.

Author information

  • 1Biomedical Research Center, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul, Republic of Korea.

Abstract

Antiangiogenic peptide drugs have received much attention in the fields of tumor therapy and tumor imaging because they show promise in the targeting of integrins such as alpha(v)beta(3) on angiogenic endothelial cells. However, systemic antiangiogenic peptide drugs have short half-lives in vivo, resulting in fast serum clearance via the kidney, and thus the therapeutic effects of such drugs remain modest. In this study, we prepared self-assembled glycol chitosan nanoparticles and explored whether this construct might function as a prolonged and sustained drug delivery system for RGD peptide, used as an antiangiogenic model drug in cancer therapy. Glycol chitosan hydrophobically modified with 5beta-cholanic acid (HGC) formed nanoparticles with a diameter of 230 nm, and RGD peptide was easily encapsulated into HGC nanoparticles (yielding RGD-HGC nanoparticles) with a high loading efficiency (>85%). In vitro work demonstrated that RGD-HGC showed prolonged and sustained release of RGD, lasting for 1 week. RGD-HGC also inhibited HUVEC adhesion to a beta ig-h3 protein-coated surface, indicating an antiangiogenic effect of the RGD peptide in the HGC nanoparticles. In an in vivo study, the antiangiogenic peptide drug formulation of RGD-HGC markedly inhibited bFGF-induced angiogenesis and decreased hemoglobin content in Matrigel plugs. Intratumoral administration of RGD-HGC significantly decreased tumor growth and microvessel density compared to native RGD peptide injected either intravenously or intratumorally, because the RGD-HGC formulation strongly enhanced the antiangiogenic and antitumoral efficacy of RGD peptide by affording prolonged and sustained RGD peptide delivery locally and regionally in solid tumors.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk