Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):2883-8. doi: 10.1073/pnas.0711983105. Epub 2008 Feb 15.

Generation of human induced pluripotent stem cells from dermal fibroblasts.

Author information

  • 1Department of Molecular Cell and Developmental Biology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, 615 Charles E. Young Drive South, University of California, Los Angeles, CA 90095, USA. blowry@ucla.edu

Abstract

The generation of patient-specific pluripotent stem cells has the potential to accelerate the implementation of stem cells for clinical treatment of degenerative diseases. Technologies including somatic cell nuclear transfer and cell fusion might generate such cells but are hindered by issues that might prevent them from being used clinically. Here, we describe methods to use dermal fibroblasts easily obtained from an individual human to generate human induced pluripotent stem (iPS) cells by ectopic expression of the defined transcription factors KLF4, OCT4, SOX2, and C-MYC. The resultant cell lines are morphologically indistinguishable from human embryonic stem cells (HESC) generated from the inner cell mass of a human preimplantation embryo. Consistent with these observations, human iPS cells share a nearly identical gene-expression profile with two established HESC lines. Importantly, DNA fingerprinting indicates that the human iPS cells were derived from the donor material and are not a result of contamination. Karyotypic analyses demonstrate that reprogramming of human cells by defined factors does not induce, or require, chromosomal abnormalities. Finally, we provide evidence that human iPS cells can be induced to differentiate along lineages representative of the three embryonic germ layers indicating the pluripotency of these cells. Our findings are an important step toward manipulating somatic human cells to generate an unlimited supply of patient-specific pluripotent stem cells. In the future, the use of defined factors to change cell fate may be the key to routine nuclear reprogramming of human somatic cells.

PMID:
18287077
[PubMed - indexed for MEDLINE]
PMCID:
PMC2268554
Free PMC Article

Images from this publication.See all images (5)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk