Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):3076-81. doi: 10.1073/pnas.0708931105. Epub 2008 Feb 19.

Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation.

Author information

  • 1Institut National de la Santé et de la Recherche Médicale, Unité 571, F-75015 Paris, France. lindner@necker.fr

Abstract

Aging, defined as a decrease in reproduction rate with age, is a fundamental characteristic of all living organisms down to bacteria. Yet we know little about the causal molecular mechanisms of aging within the in vivo context of a wild-type organism. One of the prominent markers of aging is protein aggregation, associated with cellular degeneracy in many age-related diseases, although its in vivo dynamics and effect are poorly understood. We followed the appearance and inheritance of spontaneous protein aggregation within lineages of Escherichia coli grown under nonstressed conditions using time-lapse microscopy and a fluorescently tagged chaperone (IbpA) involved in aggregate processing. The fluorescent marker is shown to faithfully identify in vivo the localization of aggregated proteins, revealing their accumulation upon cell division in cells with older poles. This accretion is associated with >30% of the loss of reproductive ability (aging) in these cells relative to the new-pole progeny, devoid of parental inclusion bodies, that exhibit rejuvenation. This suggests an asymmetric strategy whereby dividing cells segregate damage at the expense of aging individuals, resulting in the perpetuation of the population.

PMID:
18287048
[PubMed - indexed for MEDLINE]
PMCID:
PMC2268587
Free PMC Article

Images from this publication.See all images (5)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central Icon for Faculty of 1000
    Loading ...
    Write to the Help Desk