High-sensitivity mid-infrared heterodyne spectrometer with a tunable diode laser as a local oscillator

Appl Opt. 1998 Aug 20;37(24):5771-6. doi: 10.1364/ao.37.005771.

Abstract

A new mid-IR heterodyne spectrometer, which is intended to be applied for atmospheric and astrophysical studies, is presented. The spectrometer uses a frequency-stabilized tunable diode laser as a local oscillator. Owing to the low output power of available single-mode diode lasers, a newly developed confocal-ring resonator, the diplexer, is used to superimpose the source signal efficiently with that of the local oscillator. Additionally, the diplexer serves as an optical filter that establishes controlled optical feedback between the laser diode and the detector, which allows stable laser operation with linewidths of the order of 1 MHz. The heterodyne signal from the HgCdTe detector is analyzed by means of a 1.4-GHz acousto-optical spectrometer. With this setup we find system temperatures as low as 4400 K (double sideband), that is, approximately a factor of 6 of the quantum limit.