Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Syst Biol. 2008;4:165. doi: 10.1038/msb4100203. Epub 2008 Feb 12.

Accurate prediction of protein-protein interactions from sequence alignments using a Bayesian method.

Author information

  • 1Biozentrum, the University of Basel, and Swiss Institute of Bioinformatics, Basel, Switzerland.

Abstract

Accurate and large-scale prediction of protein-protein interactions directly from amino-acid sequences is one of the great challenges in computational biology. Here we present a new Bayesian network method that predicts interaction partners using only multiple alignments of amino-acid sequences of interacting protein domains, without tunable parameters, and without the need for any training examples. We first apply the method to bacterial two-component systems and comprehensively reconstruct two-component signaling networks across all sequenced bacteria. Comparisons of our predictions with known interactions show that our method infers interaction partners genome-wide with high accuracy. To demonstrate the general applicability of our method we show that it also accurately predicts interaction partners in a recent dataset of polyketide synthases. Analysis of the predicted genome-wide two-component signaling networks shows that cognates (interacting kinase/regulator pairs, which lie adjacent on the genome) and orphans (which lie isolated) form two relatively independent components of the signaling network in each genome. In addition, while most genes are predicted to have only a small number of interaction partners, we find that 10% of orphans form a separate class of 'hub' nodes that distribute and integrate signals to and from up to tens of different interaction partners.

PMID:
18277381
[PubMed - indexed for MEDLINE]
PMCID:
PMC2267735
Free PMC Article

Images from this publication.See all images (7)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk