Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Appl Physiol (1985). 2008 Apr;104(4):1086-93. doi: 10.1152/japplphysiol.01209.2007. Epub 2008 Feb 14.

Food restriction and simulated microgravity: effects on bone and serum leptin.

Author information

  • 1Dept. of Health and Kinesiology. Texas A&M, Univ., College Station, TX 77843-4243, USA. sbloom@tamu.edu

Abstract

Leptin is responsible for linking energy metabolism to bone mass. Because astronauts are commonly in negative energy balance during spaceflight, this study was designed to assess individual and combined effects of food restriction and simulated microgravity on bone mass and serum leptin. Six-month-old male Sprague-Dawley rats were randomly assigned to four groups (n = 12 each): two hindlimb-unloading (HU) groups fed 100% (HU100) and 70% (HU70) and two cage-activity control (CC) groups fed 100% (CC100) and 70% (CC70) of their baseline food requirement. After 28 days, CC100 rats gained body weight, whereas all other groups lost body weight; this loss was greater in HU70 than in CC70 and HU100 rats. Serum leptin decreased in CC70 and HU100 (-60% and -27%, respectively) and was not detectable in HU70 animals. Percent osteoid surface in CC70 and HU100 was lower than that of CC100 (7.80%, 8.60% vs. 10.70%, respectively), and this decrease was more pronounced in HU70 animals (4.38%). Mineral apposition rate of CC70, HU100, and HU70 rats was lower than that of CC100 (1.5, 1.6, and 1.5 vs. 2.1 mum/day, respectively). Bone formation rate of CC70, HU100, and HU70 rats was lower than that of CC100 (13.4, 13.1, and 12.2 vs. 40.8 mm(3).mm(-2).day(-1), respectively). The change in bone formation rate was correlated with the change in serum leptin value over 28 days (r(2) = 0.69, P = 0.0007). We conclude that moderate caloric restriction may cause bone loss at susceptible bone sites to a similar degree as does the unloading effect of microgravity; serum leptin may be an important endocrine regulator contributing to this change in skeletal integrity.

PMID:
18276897
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk