Send to:

Choose Destination
See comment in PubMed Commons below
Proteome Sci. 2008 Feb 14;6:8. doi: 10.1186/1477-5956-6-8.

Proteome analysis of human substantia nigra in Parkinson's disease.

Author information

  • 1Department of Neurology, University Hospital RWTH Aachen, Germany.



Parkinson's disease (PD) is the most common neurodegenerative disorder involving the motor system. Although not being the only region involved in PD, affection of the substantia nigra and its projections is responsible for some of the most debilitating features of the disease. To further advance a comprehensive understanding of nigral pathology, we conducted a tissue based comparative proteome study of healthy and diseased human substantia nigra.


The gross number of differentially regulated proteins in PD was 221. In total, we identified 37 proteins, of which 16 were differentially expressed. Identified differential proteins comprised elements of iron metabolism (H-ferritin) and glutathione-related redox metabolism (GST M3, GST P1, GST O1), including novel redox proteins (SH3BGRL). Additionally, many glial or related proteins were found to be differentially regulated in PD (GFAP, GMFB, galectin-1, sorcin), as well as proteins belonging to metabolic pathways sparsely described in PD, such as adenosyl homocysteinase (methylation), aldehyde dehydrogenase 1 and cellular retinol-binding protein 1 (aldehyde metabolism). Further differentially regulated proteins included annexin V, beta-tubulin cofactor A, coactosin-like protein and V-type ATPase subunit 1. Proteins that were similarly expressed in healthy or diseased substantia nigra comprised housekeeping proteins such as COX5A, Rho GDI alpha, actin gamma 1, creatin-kinase B, lactate dehydrogenase B, disulfide isomerase ER-60, Rab GDI beta, methyl glyoxalase 1 (AGE metabolism) and glutamine synthetase. Interestingly, also DJ-1 and UCH-L1 were expressed similarly. Furthermore, proteins believed to serve as internal standards were found to be expressed in a constant manner, such as 14-3-3 epsilon and hCRMP-2, thus lending further validity to our results.


Using an approach encompassing high sensitivity and high resolution, we show that alterations of SN in PD include many more proteins than previously thought. The results point towards a heterogeneous aetiopathogenesis of the disease, including alterations of GSH-related proteins as well as alterations of proteins involved in retinoid metabolism, and they indicate that proteins involved in familial PD may not be differentially regulated in idiopathic Parkinson's disease.

Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk