Format

Send to:

Choose Destination
See comment in PubMed Commons below
IEEE Trans Neural Netw. 1993;4(4):558-69.

;Neural-gas' network for vector quantization and its application to time-series prediction.

Author information

  • 1Dept. of Phys., Illinois Univ., Urbana, IL.

Abstract

A neural network algorithm based on a soft-max adaptation rule is presented. This algorithm exhibits good performance in reaching the optimum minimization of a cost function for vector quantization data compression. The soft-max rule employed is an extension of the standard K-means clustering procedure and takes into account a neighborhood ranking of the reference (weight) vectors. It is shown that the dynamics of the reference (weight) vectors during the input-driven adaptation procedure are determined by the gradient of an energy function whose shape can be modulated through a neighborhood determining parameter and resemble the dynamics of Brownian particles moving in a potential determined by the data point density. The network is used to represent the attractor of the Mackey-Glass equation and to predict the Mackey-Glass time series, with additional local linear mappings for generating output values. The results obtained for the time-series prediction compare favorably with the results achieved by backpropagation and radial basis function networks.

PMID:
18267757
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IEEE Engineering in Medicine and Biology Society
    Loading ...
    Write to the Help Desk