Send to:

Choose Destination
See comment in PubMed Commons below
Neurobiol Aging. 2009 Oct;30(10):1563-73. doi: 10.1016/j.neurobiolaging.2007.12.015. Epub 2008 Feb 6.

JNK and ERK1/2 pathways have a dual opposite effect on the expression of BACE1.

Author information

  • 1Department of Experimental Medicine and Oncology, University of Turin, Turin, Italy.


The activity of beta-secretase (BACE1), the endo-protease essential for the production of amyloid beta (Abeta) peptides, is increased in brain of late-onset sporadic Alzheimer's disease (AD), and oxidative stress is the potential cause of this event. Oxidative stress up-regulates the expression and the activity of BACE1 in cellular and animal models, through a mechanism that involves the increase of gamma-secretase cleavage on APP and the activation of c-jun N-terminal kinase/activator protein 1 (JNK/AP1) pathway. We further characterized the cellular pathways that control BACE1 expression under oxidative stress. We investigated the involvement of extracellular signal regulated MAP kinase (ERK1/2) pathway in the regulation of BACE1 expression, since it has been recently shown that ERK1/2 is an endogenous regulator of the gamma-secretase activity. We found that ERK1/2 pathway negatively modulates BACE1 expression and activity. Moreover, we observed that conditions that abrogate the gamma-secretase activity favor the activation of signalling pathways that promote cell survival, such as ERK1/2 and the serine/threonine kinase Akt/protein kinase B (Akt). These data suggest that the positive or negative cellular responses to oxidative stress parallel the activities of the beta- and the gamma-secretase. ERK1/2 and JNK pathways are involved in this bipartite response, which can lead to neurodegeneration or neuroprotection depending on the cellular and environmental conditions or cooperation with other signalling pathways such as Akt cascade.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk