Display Settings:

Format

Send to:

Choose Destination
Am J Pathol. 2008 Mar;172(3):818-29. doi: 10.2353/ajpath.2008.070312. Epub 2008 Feb 2.

Potential role of CYLD (Cylindromatosis) as a deubiquitinating enzyme in vascular cells.

Author information

  • 1Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.

Abstract

Data from several studies suggest that the ubiquitin-proteasome system may play a role in the progression of atherosclerosis. Here, we examined the potential role of the deubiquitinating enzyme CYLD (cylindromatosis), mutation of which has been reported to cause familial cylindromatosis. Northern blot analysis revealed expression of CYLD mRNA in the aorta, as well as in cultured human aortic endothelial cells (ECs) and vascular smooth muscle cells. Treatment with recombinant tumor necrosis factor (TNF)-alpha significantly increased CYLD expression in ECs and vascular smooth muscle cells. Immunostaining showed CYLD expression in atherosclerotic lesions from human carotid arteries and up-regulation of CYLD expression in the neointima of rat carotid arteries after balloon injury. Overexpression of CYLD in ECs resulted in inhibition of TNF-alpha-induced nuclear factor-kappaB activity through deubiquitination of TNFR-associated factor 2 (TRAF2), whereas overexpression of catalytically inactive CYLD had no effect. CYLD overexpression also inhibited expression of cyclin D1 and activation of the E2F pathway through deubiquitination of the upstream molecule Bcl-3 and inhibition of its translocation into the nucleus. Overexpressed CYLD also significantly inhibited cell viability. Furthermore, overexpression of CYLD in rat balloon-injured carotid artery attenuated neointimal formation through inactivation of nuclear factor-kappaB and E2F. In conclusion, these data demonstrate that the deubiquitinating enzyme CYLD may inhibit inflammation and proliferation in vascular cells and may represent a novel target for the treatment or prevention of atherosclerosis.

PMID:
18245814
[PubMed - indexed for MEDLINE]
PMCID:
PMC2258263
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk