Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Mutat Res. 2008 Apr 2;640(1-2):107-12. doi: 10.1016/j.mrfmmm.2007.12.009. Epub 2007 Dec 28.

Binding of MutS protein to oligonucleotides containing a methylated or an ethylated guanine residue, and correlation with mutation frequency.

Author information

  • 1Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700-8530, Japan.


The MutS-based mismatch repair (MMR) system has been conserved from prokaryotes to humans, and plays important roles in maintaining the high fidelity of genomic DNA. MutS protein recognizes several different types of modified base pairs, including methylated guanine-containing base pairs. Here, we looked at the relationship between recognition and the effects of methylating versus ethylating agents on mutagenesis, using a MutS-deficient strain of E. coli. We find that while methylating agents induce mutations more effectively in a MutS-deficient strain than in wild-type, this genetic background does not affect mutagenicity by ethylating agents. Thus, the role of E. coli MMR with methylation-induced mutagenesis appears to be greater than ethylation-induced mutagenesis. To further understand this difference an early step of repair was examined with these alkylating agents. A comparison of binding affinities of MutS with O(6)-alkylated guanine base paired with thymine, which could lead to transition mutations, versus cytosine which could not, was tested. Moreover, we compared binding of MutS to oligoduplexes containing different base pairs; namely, O(6)-MeG:T, O(6)-MeG:C, O(6)-EtG:T, O(6)-EtG:C, G:T and G:C. Dissociation constants (K(d)), which reflect the strength of binding, followed the order G:T->O(6)-MeG:T->O(6)-EtG:T-=O(6)-EtG:C-> or =O(6)-MeG:C->G:C. These results suggest that a thymine base paired with O(6)-methyl guanine is specifically recognized by MutS and therefore should be removed more efficiently than a thymine opposite O(6)-ethylated guanine. Taken together, the data suggest that in E. coli, the MMR system plays a more significant role in repair of methylation-induced lesions than those caused by ethylation.

[PubMed - indexed for MEDLINE]
Free PMC Article

Images from this publication.See all images (3)Free text

Fig. 1
Fig. 2
Fig. 3
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk