Display Settings:

Format

Send to:

Choose Destination
Stem Cells. 2008 Apr;26(4):886-93. doi: 10.1634/stemcells.2007-0620. Epub 2008 Jan 31.

Directed differentiation of ventral spinal progenitors and motor neurons from human embryonic stem cells by small molecules.

Author information

  • 1Department of Anatomy and the Stem Cell Research Program, Madison, Wisconsin 53705, USA.

Abstract

Specification of distinct cell types from human embryonic stem cells (hESCs) is key to the potential application of these naïve pluripotent cells in regenerative medicine. Determination of the nontarget differentiated populations, which is lacking in the field, is also crucial. Here, we show an efficient differentiation of motor neurons ( approximately 50%) by a simple sequential application of retinoid acid and sonic hedgehog (SHH) in a chemically defined suspension culture. We also discovered that purmorphamine, a small molecule that activates the SHH pathway, could replace SHH for the generation of motor neurons. Immunocytochemical characterization indicated that cells differentiated from hESCs were nearly completely restricted to the ventral spinal progenitor fate (NKX2.2+, Irx3+, and Pax7-), with the exception of motor neurons (HB9+) and their progenitors (Olig2+). Thus, the directed neural differentiation system with small molecules, even without further purification, will facilitate basic and translational studies using human motoneurons at a minimal cost.

PMID:
18238853
[PubMed - indexed for MEDLINE]
PMCID:
PMC2707816
Free PMC Article

Images from this publication.See all images (4)Free text

Figure 1
Figure 2
Figure 3
Figure 4
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for John Wiley & Sons, Inc. Icon for PubMed Central
    Loading ...
    Write to the Help Desk