Display Settings:

Format

Send to:

Choose Destination
Anal Chem. 2008 Mar 1;80(5):1558-67. doi: 10.1021/ac702143r. Epub 2008 Jan 30.

Sample dispersion for segmented flow in microchannels with rectangular cross section.

Author information

  • 1Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames Street, Cambridge, Massachusetts 02139, USA.

Abstract

Hydrodynamic dispersion in microchannels can be significantly reduced by segmentation with a second immiscible phase. We address the effect of microchannel cross section on the dispersion of analytes in a segmented gas-liquid flow of alternating bubbles and liquid segments. Channels of square or nearly square cross section are considered. A significant fraction of the liquid surrounds the bubbles and wets the channel walls in the form of films or menisci. This stagnant fraction of the liquid remains when gas and liquid segments flow by, and it is connected to the liquid within the liquid segments by diffusion only and it effectively increases dispersion. We design and fabricate a microchip with integrated analyte injection and detection to investigate the effects of the influence of the stagnant liquid in segmented flow through square microchannels on the analyte bandwidth. The measured data and a corresponding model confirm the experimental trends and suggest operating conditions at which the unwanted effect of dispersion in segmented microchannel flow is minimized. Dispersion is least when the liquid flow rate is greater than the gas flow rate, and the optimum ratio of the two flow rates slightly increases with increasing bubble velocity.

PMID:
18229943
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk