Aggregation of ionic liquids [C(n)mim]Br (n = 4, 6, 8, 10, 12) in D2O: a NMR study

J Phys Chem B. 2008 Feb 21;112(7):2031-9. doi: 10.1021/jp076467e. Epub 2008 Jan 30.

Abstract

Aqueous solutions of five ionic liquids (ILs) of the 1-n-alkyl-3-methylimidazolium bromide family, [C(n)mim]Br (n = 4, 6, 8, 10, 12), were investigated by NMR measurements at 298.2 K as a function of IL concentrations. Critical aggregation concentrations and aggregation numbers of these ILs were determined by 1H NMR except for [C4mim]Br in D2O. The effects of the alkyl chain length of the cations were examined on the aggregation behavior of the ILs. 1H NMR data of the solvent D2O were used to investigate the hydration of the ILs in D2O, and it was found that the ionic hydration and the cation-anion association or aggregation of the ILs offset each other. The microenvironment of different protons of cations of the ILs in the aggregates was probed by determining the spin-lattice relaxation rate (1/T1). It is suggested that the imidazolium rings in the aggregates are exposed to water and that the molecular motion of the aggregates is more restricted than that of the monomers of the ILs. Furthermore, a stair-like microscopic aggregation structure is suggested for the [C(n)mim]Br/D2O (n = 6, 8, 10) systems from 2-D 1H-1H NOESY measurements.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Deuterium Oxide
  • Imidazoles / chemistry*
  • Ionic Liquids / chemistry*
  • Magnetic Resonance Spectroscopy
  • Motion
  • Solutions
  • Water

Substances

  • Imidazoles
  • Ionic Liquids
  • Solutions
  • Water
  • 1-butyl-3-methylimidazolium chloride
  • Deuterium Oxide