Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2008 Apr 4;283(14):9388-98. doi: 10.1074/jbc.M706367200. Epub 2008 Jan 28.

Serotonin transamidates Rab4 and facilitates its binding to the C terminus of serotonin transporter.

Author information

  • 1Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, 301 West Markham Street, Little Rock, AR 72205, USA.

Abstract

The serotonin transporter (SERT) on the plasma membrane is the major mechanism for the clearance of plasma serotonin (5-hydroxytryptamine (5HT)). The uptake rates of cells depend on the density of SERT molecules on the plasma membrane. Interestingly, the number of SERT molecules on the platelet surface is down-regulated when plasma 5HT ([5HT](ex)) is elevated. It is well reported that stimulation of cells with high [5HT](ex) induces transamidation of a small GTPase, Rab4. Modification with 5HT stabilizes Rab4 in its active, GTP-bound form, Rab4-GTP. Although investigating the mechanism by which elevated plasma 5HT level down-regulates the density of SERT molecules on the plasma membrane, we studied Rab4 and SERT in heterologous and platelet expression systems. Our data demonstrate that, in response to elevated [5HT](ex), Rab4-GTP co-localizes with and binds to SERT. The association of SERT with Rab4-GTP depends on: (i) 5HT modification and (ii) the GTP-binding ability of Rab4. Their association retains transporter molecules intracellularly. Furthermore, we mapped the Rab4-SERT association domain to amino acids 616-624 in the cytoplasmic tail of SERT. This finding provides an explanation for the role of the C terminus in the localization and trafficking of SERT via Rab4 in a plasma 5HT-dependent manner. Therefore, we propose that elevated [5HT](ex)"paralyzes" the translocation of SERT from intracellular locations to the plasma membrane by controlling transamidation and Rab4-GTP formation.

PMID:
18227069
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk