Format

Send to

Choose Destination
See comment in PubMed Commons below
Environ Health. 2008 Jan 28;7:5. doi: 10.1186/1476-069X-7-5.

An ecological time-series study of heat-related mortality in three European cities.

Author information

  • 1Public & Environmental Health Research Unit, London School of Hygiene & Tropical Medicine, Kappel Street, London, WC1E 7HT, UK. ai.ishigami@lshtm.ac.uk

Abstract

BACKGROUND:

Europe has experienced warmer summers in the past two decades and there is a need to describe the determinants of heat-related mortality to better inform public health activities during hot weather. We investigated the effect of high temperatures on daily mortality in three cities in Europe (Budapest, London, and Milan), using a standard approach.

METHODS:

An ecological time-series study of daily mortality was conducted in three cities using Poisson generalized linear models allowing for over-dispersion. Secular trends in mortality and seasonal confounding factors were controlled for using cubic smoothing splines of time. Heat exposure was modelled using average values of the temperature measure on the same day as death (lag 0) and the day before (lag 1). The heat effect was quantified assuming a linear increase in risk above a cut-point for each city. Socio-economic status indicators and census data were linked with mortality data for stratified analyses.

RESULTS:

The risk of heat-related death increased with age, and females had a greater risk than males in age groups > or =65 years in London and Milan. The relative risks of mortality (per degrees C) above the heat cut-point by gender and age were: (i) Male 1.10 (95%CI: 1.07-1.12) and Female 1.07 (1.05-1.10) for 75-84 years, (ii) M 1.10 (1.06-1.14) and F 1.08 (1.06-1.11) for > or = or =85 years in Budapest (> or =24 degrees C); (i) M 1.03 (1.01-1.04) and F 1.07 (1.05-1.09), (ii) M 1.05 (1.03-1.07) and F 1.08 (1.07-1.10) in London (> or =20 degrees C); and (i) M 1.08 (1.03-1.14) and F 1.20 (1.15-1.26), (ii) M 1.18 (1.11-1.26) and F 1.19 (1.15-1.24) in Milan (> or =26 degrees C). Mortality from external causes increases at higher temperatures as well as that from respiratory and cardiovascular disease. There was no clear evidence of effect modification by socio-economic status in either Budapest or London, but there was a seemingly higher risk for affluent non-elderly adults in Milan.

CONCLUSION:

We found broadly consistent determinants (age, gender, and cause of death) of heat related mortality in three European cities using a standard approach. Our results are consistent with previous evidence for individual determinants, and also confirm the lack of a strong socio-economic gradient in heat health effects currently in Europe.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk