Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nat Struct Mol Biol. 2008 Feb;15(2):170-6. doi: 10.1038/nsmb.1381. Epub 2008 Jan 27.

Single-molecule studies of fork dynamics in Escherichia coli DNA replication.

Author information

  • 1Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, Massachusetts 02115, USA.

Erratum in

  • Nat Struct Mol Biol. 2008 Sep;15(9):998. Loscha, Karin V [added].

Abstract

We present single-molecule studies of the Escherichia coli replication machinery. We visualize individual E. coli DNA polymerase III (Pol III) holoenzymes engaging in primer extension and leading-strand synthesis. When coupled to the replicative helicase DnaB, Pol III mediates leading-strand synthesis with a processivity of 10.5 kilobases (kb), eight-fold higher than that by Pol III alone. Addition of the primase DnaG causes a three-fold reduction in the processivity of leading-strand synthesis, an effect dependent upon the DnaB-DnaG protein-protein interaction rather than primase activity. A single-molecule analysis of the replication kinetics with varying DnaG concentrations indicates that a cooperative binding of two or three DnaG monomers to DnaB halts synthesis. Modulation of DnaB helicase activity through the interaction with DnaG suggests a mechanism that prevents leading-strand synthesis from outpacing lagging-strand synthesis during slow primer synthesis on the lagging strand.

Comment in

PMID:
18223657
[PubMed - indexed for MEDLINE]
PMCID:
PMC2651573
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Write to the Help Desk