Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Am Chem Soc. 2008 Feb 27;130(8):2473-84. doi: 10.1021/ja0744450. Epub 2008 Jan 24.

A three-state model for the photophysics of guanine.

Author information

  • 1Instituto de Ciencia Molecular, Universitat de València, Apartado 22085, ES-46071 Valencia, Spain. Luis.Serrano@uv.es

Abstract

The nonadiabatic photochemistry of the guanine molecule (2-amino-6-oxopurine) and some of its tautomers has been studied by means of the high-level theoretical ab initio quantum chemistry methods CASSCF and CASPT2. Accurate computations, based by the first time on minimum energy reaction paths, states minima, transition states, reaction barriers, and conical intersections on the potential energy hypersurfaces of the molecules lead to interpret the photochemistry of guanine and derivatives within a three-state model. As in the other purine DNA nucleobase, adenine, the ultrafast subpicosecond fluorescence decay measured in guanine is attributed to the barrierless character of the path leading from the initially populated 1(pi pi* L(a)) spectroscopic state of the molecule toward the low-lying methanamine-like conical intersection (gs/pi pi* L(a))CI. On the contrary, other tautomers are shown to have a reaction energy barrier along the main relaxation profile. A second, slower decay is attributed to a path involving switches toward two other states, 1(pi pi* L(b)) and, in particular, 1(n(O) pi*), ultimately leading to conical intersections with the ground state. A common framework for the ultrafast relaxation of the natural nucleobases is obtained in which the predominant role of a pi pi*-type state is confirmed.

PMID:
18215036
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk