Format

Send to:

Choose Destination
See comment in PubMed Commons below
Oncogene. 2008 Jun 12;27(26):3739-45. doi: 10.1038/sj.onc.1211042. Epub 2008 Jan 21.

Ubiquitin binding mediates the NF-kappaB inhibitory potential of ABIN proteins.

Author information

  • 1Institute for Biochemistry II, Goethe University Medical School, Frankfurt, Germany.

Abstract

Deregulated nuclear factor kappaB (NF-kappaB) activation plays an important role in inflammation and tumorigenesis. ABIN proteins have been characterized as negative regulators of NF-kappaB signaling. However, their mechanism of NF-kappaB inhibition remained unclear. With the help of a yeast two-hybrid screen, we identified ABIN proteins as novel ubiquitin-interacting proteins. The minimal ubiquitin-binding domain (UBD) corresponds to the ABIN homology domain 2 (AHD2) and is highly conserved in ABIN-1, ABIN-2 and ABIN-3. Moreover, this region is also present in NF-kappaB essential modulator/IkappaB kinase gamma (NEMO/IKKgamma) and the NEMO-like protein optineurin, and is therefore termed UBD in ABIN proteins and NEMO (UBAN). Nuclear magnetic resonance studies of the UBAN domain identify it as a novel type of UBD, with the binding surface on ubiquitin being significantly different from the binding surface of other UBDs. ABIN-1 specifically binds ubiquitinated NEMO via a bipartite interaction involving its UBAN and NEMO-binding domain. Mutations in the UBAN domain led to a loss of ubiquitin binding and impaired the NF-kappaB inhibitory potential of ABINs. Taken together, these data illustrate an important role for ubiquitin binding in the negative regulation of NF-kappaB signaling by ABINs and identify UBAN as a novel UBD.

PMID:
18212736
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk