Format

Send to

Choose Destination
See comment in PubMed Commons below
Planta Med. 2008 Feb;74(2):188-93. doi: 10.1055/s-2008-1034276. Epub 2008 Jan 17.

Tissue specificity and developmental pattern of amorpha-4,11-diene synthase (ADS) proved by ADS promoter-driven GUS expression in the heterologous plant, Arabidopsis thaliana.

Author information

  • 1Program in Applied Life Chemistry, Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea.

Abstract

Amorpha-4,11-diene synthase (ADS) of Artemisia annua L. is a sesquiterpene cyclase that catalyzes the conversion of farnesyl diphosphate into amorpha-4,11-diene in the biosynthesis of the antimalarial artemisinin. To explore the mechanisms regulating the tissue-specific and developmental distributions of ADS, a full ADS promoter was generated using PCR, and fused to GUS for introduction into Arabidopsis thaliana. ADSpro::GUS fusion transcripts were organ-specific, mainly present in the anthers and trichomes of the green tissues of the juvenile leaves. This result was consistent with the ADS transcription pattern observed in A. annua as examined by RT-PCR. To determine the subcellular localization of ADS, an open reading frame (ORF) of ADS was fused to the green fluorescent protein (smGFP) gene and introduced into the A. thaliana protoplasts. GFP fluorescence was located exclusively in the cytosol, an indication that ADS is a cytosol-localized protein.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Georg Thieme Verlag Stuttgart, New York
    Loading ...
    Write to the Help Desk