Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Environ Sci Technol. 2007 Dec 15;41(24):8464-70.

Electrochemical acceleration of chemical weathering as an energetically feasible approach to mitigating anthropogenic climate change.

Author information

  • 1Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, USA. khouse@fas.harvard.edu

Abstract

We describe an approach to CO2 capture and storage from the atmosphere that involves enhancing the solubility of CO2 in the ocean by a process equivalent to the natural silicate weathering reaction. HCl is electrochemically removed from the ocean and neutralized through reaction with silicate rocks. The increase in ocean alkalinity resulting from the removal of HCI causes atmospheric CO2 to dissolve into the ocean where it will be stored primarily as HCO3- without further acidifying the ocean. On timescales of hundreds of years or longer, some of the additional alkalinity will likely lead to precipitation or enhanced preservation of CaCO3, resulting in the permanent storage of the associated carbon, and the return of an equal amount of carbon to the atmosphere. Whereas the natural silicate weathering process is effected primarily by carbonic acid, the engineered process accelerates the weathering kinetics to industrial rates by replacing this weak acid with HCI. In the thermodynamic limit--and with the appropriate silicate rocks--the overall reaction is spontaneous. A range of efficiency scenarios indicates that the process should require 100-400 kJ of work per mol of CO2 captured and stored for relevant timescales. The process can be powered from stranded energy sources too remote to be useful for the direct needs of population centers. It may also be useful on a regional scale for protection of coral reefs from further ocean acidification. Application of this technology may involve neutralizing the alkaline solution that is coproduced with HCI with CO2 from a point source or from the atmosphere prior to being returned to the ocean.

PMID:
18200880
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk