Format

Send to:

Choose Destination
See comment in PubMed Commons below
Int Immunol. 2008 Mar;20(3):317-26. doi: 10.1093/intimm/dxm152. Epub 2008 Jan 14.

Tissue-specific expression of B-cell translocation gene 2 (BTG2) and its function in T-cell immune responses in a transgenic mouse model.

Author information

  • 1The Laboratory of Immunology, Centre hospitalier de l'Université de Montréal, Notre-Dame Hospital, Pavilion DeSève, 1560 Sherbrooke Street East, Montreal, Quebec H2L 4M1, Canada.

Abstract

B-cell translocation gene 2 (BTG2) belongs to the anti-proliferative gene family. According to previous in vitro studies, BTG2 overexpression leads to delayed cell cycling. We investigated BTG2 expression during mouse ontogeny and its immune and circadian functions in this study. In situ hybridization showed that BTG2 was expressed at high levels in the central nervous system, liver, stomach, thymus, spleen, skin, adrenal gland, pituitary gland and salivary glands during embryonic days (E10-E17), postnatal days (P1 and P10) and adult stages. Expression was observed in organs and tissues from adult mice with and without a robust proliferation program. Thus, the gene might have important functions that are both related and unrelated to proliferation. BTG2 expression was induced after in vitro T-cell receptor stimulation in T cells using anti-CD3 antibodies. However, transgenic (Tg) mice with actin promoter-driven expression of BTG2 showed normal in vitro and in vivo T-cell responses, such as thymus development, T-cell activation marker expression, T-cell proliferation and migration, as well as in vivo delayed-type hypersensitivity reactions. Although BTG2 was expressed in the suprachiasmatic nucleus and pineal gland in the brain, BTG2 Tg mice had no abnormal circadian behavior. Our data on BTG2 expression during ontogeny provide useful clues for the further investigation of BTG2 function. Additional studies are warranted to examine its role in immune and other systems.

PMID:
18195048
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk