Format

Send to:

Choose Destination
See comment in PubMed Commons below
Oecologia. 2008 Apr;155(4):809-19. doi: 10.1007/s00442-007-0950-5. Epub 2008 Jan 10.

Disturbance frequency influences patch dynamics in stream benthic algal communities.

Author information

  • 1School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK. m.e.ledger@bham.ac.uk

Abstract

Disturbance is integral to the organisation of riverine ecosystems. Fluctuating low flows caused by supra-seasonal drought and water management periodically dewater habitat patches, potentially creating heterogeneity in the taxonomic composition and successional dynamics of benthic communities. The frequency of disturbance induced by low flows is contingent upon the topography of the river bed and thus varies among patches. We investigated whether the frequency of patch dewatering influenced the structure and temporal dynamics of benthic algal communities attached to the upper surfaces of stones in stream mesocosms (4 m2). In a 693-day disturbance experiment, we applied short dewatering disturbances (6 days) at high (33-day cycles) and low frequencies (99-day cycles) and compared algal assemblages with undisturbed controls at 21 endpoints. In the absence of disturbance, epilithic space was dominated by the green encrusting alga Gongrosira incrustans. However, drying disturbances consistently reduced the dominance of the green alga, and crust abundance decreased with increasing disturbance frequency, thereby opening space for a diversity of mat-forming diatoms. The response of mat diatoms to disturbance varied markedly during the experiment, from strong reductions in the abundance of loosely attached mats in mid-late 2000 to the exploitation of open space by closely adhering mats in 2001. Contrary responses were attributed to changes in the species composition of mat diatoms, which influenced the physiognomy and hence stress-resistance and resilience of the assemblage. Our results indicate that patchy dewatering of habitat patches during periods of low flow influences the successional dynamics of algae, thereby creating distinctive mosaics on the stream bed.

PMID:
18193289
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk