Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Cardiovasc Med (Hagerstown). 2008 Feb;9(2):122-8. doi: 10.2459/JCM.0b013e32820588f0.

Bone marrow-derived mesenchymal stem cells for treatment of heart failure: is it all paracrine actions and immunomodulation?

Author information

  • Department of Cardiothoracic Surgery, Guy's & St. Thomas Hospital, London, UK. mishrapk_25@yahoo.com

Abstract

Despite significant advances in medical and surgical management of heart failure, mostly of ischaemic origin, the mortality and morbidity associated with it continue to be high. Pluripotent stem cells are being evaluated for treatment of heart failure. Bone marrow-derived mesenchymal stem cells (MSCs) have been extensively studied. Emerging evidence suggests that locally delivered MSCs can lead to an improvement in ventricular function, but the cellular and molecular mechanisms involved remain unclear. Myocardial regeneration, as proposed by many researchers as the underlying mechanism, has failed to convince the scientific community. Recently some authors have ascribed improvement in ventricular function to paracrine actions of MSCs.A lot has been written about the host immune response triggered by embryonic stem cells and the consequent need for immunosuppression. Not enough work has been done on immune interactions involving allogeneic bone marrow cells. Full potential of stem cell therapy can be realised only when we are able to use allogeneic cells. The potential use of MSCs in cellular therapy has recently prompted researchers to look into their interaction with the host immune response. MSCs have immunomodulatory properties. They cause suppression of proliferation of alloreactive T cells in a dose-dependent manner.Tissue injury causes inflammation and release of several chemokines, cytokines and growth factors. They can cause recruitment of bone marrow-derived MSCs to the injured area. We review the literature on paracrine actions and immune interactions of allogeneic MSCs.

PMID:
18192802
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins
    Loading ...
    Write to the Help Desk