Format

Send to

Choose Destination
See comment in PubMed Commons below
Lancet Neurol. 2008 Feb;7(2):129-35. doi: 10.1016/S1474-4422(08)70001-2. Epub 2008 Jan 10.

Imaging of amyloid beta in Alzheimer's disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism.

Author information

  • 1Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, Australia. christopher.rowe@austin.org.au

Abstract

BACKGROUND:

Amyloid-beta (Abeta) plaque formation is a hallmark of Alzheimer's disease (AD) and precedes the onset of dementia. Abeta imaging should allow earlier diagnosis, but clinical application is hindered by the short decay half-life of current Abeta-specific ligands. (18)F-BAY94-9172 is an Abeta ligand that, due to the half-life of (18)F, is suitable for clinical use. We thus studied the effectiveness of this ligand in identifying patients with AD.

METHODS:

15 patients with mild AD, 15 healthy elderly controls, and five individuals with frontotemporal lobar degeneration (FTLD) were studied. (18)F-BAY94-9172 binding was quantified by use of the standardised uptake value ratio (SUVR), which was calculated for the neocortex by use of the cerebellum as reference region. SUVR images were visually rated as normal or AD.

FINDINGS:

(18)F-BAY94-9172 binding matched the reported post-mortem distribution of Abeta plaques. All AD patients showed widespread neocortical binding, which was greater in the precuneus/posterior cingulate and frontal cortex than in the lateral temporal and parietal cortex. There was relative sparing of sensorimotor, occipital, and medial temporal cortex. Healthy controls and FTLD patients showed only white-matter binding, although three controls and one FTLD patient had mild uptake in frontal and precuneus cortex. At 90-120 min after injection, higher neocortical SUVR was observed in AD patients (2.0 [SD 0.3]) than in healthy controls (1.3 [SD 0.2]; p<0.0001) or FTLD patients (1.2 [SD 0.2]; p=0.009). Visual interpretation was 100% sensitive and 90% specific for detection of AD.

INTERPRETATION:

(18)F-BAY94-9172 PET discriminates between AD and FTLD or healthy controls and might facilitate integration of Abeta imaging into clinical practice.

Comment in

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk